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1. Abstract
A graph G is planar if it can be drawn on a flat surface (a plane) in such a way that no two
edges cross. Furthermore, G is an apex graph if it contains at most one vertex whose
deletion results in a planar graph. Just as K5 and K3,3 are the two obstructions for pla-
narity, it is known that the apex graphs are characterized by a finite list of obstructions. It
is a long-standing open problem to determine this finite list.
We introduce the related idea of cap. A graph is cap if the graph is apex or has a ∆-cap,
the edges of a triangle, whose deletion gives a planar graph. Jobson and Kézdy classified
apex obstructions of connectivity 2 (κ(G) = 2). We will mimic their work to determine cap
obstructions of connectivity 2. So far, 118 of the 133 obstructions as identified by Jobson
and Kézdy have been found to also be cap obstructions of connectivity two. The question
remains whether this list is complete or there are more to find.

2. Background
Definition 1. A graph G has connectivity 2 if there exists 2 distinct vertices whose re-
moval yields a disconnected graph (see Figure 7).
Definition 2. Let G be a graph. A cut set of G is a set of vertices, S ⊆ V (G) such that
G− S is a disconnected graph.
Definition 3. A graph G is apex if there exists at most one vertex v ∈ V (G) such that
G− v is a planar graph. Furthermore, a graph G is 2-apex if there is at most two vertices
u, v ∈ V (G) such that G− u, v is planar.
Definition 4. A graph H is a minor of G if H can be obtained from G through a series of
edge contractions, edge deletions, or vertex deletions. Furthermore, H is a proper minor
of G if H is a minor of G and H ̸= G.

Figure 1: Minor Moves.

Note: a planar graph is considered apex, as deleting any vertex from a planar graph will
yield a planar graph.
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Figure 2: Deleting two vertices from K6 results in the planar graph K4.

We concern ourselves with properties that are closed under taking minors. For exam-
ple, if G is a planar graph, no amount of minor moves will make it nonplanar. Furthermore,
if G is apex it will remain apex under minor moves.
Definition 5. A graph G is cap if a planar graph can be obtained by removing at most one
subgraph, either a vertex or the edges of a 3-cycle.
Robertson and Seymour’s graph minor theorem implies that, for any minor closed prop-
erty, there exists a finite set of minor minimal non-members, called the obstruction
set.
Upshot: if we want to identify cap graphs of connectivity two, we only need
to classify the finite list of obstructions.

3. Obstructions
If we were given a random graph, how would we go about determining whether it is
planar?
This question was answered by Kazimierz Kuratowski in 1930 when he proved the follow-
ing theorem:
Theorem 6 (Kuratowski, 1930 [2]). A graph G is planar if and only if it contains neither a
K5 nor a K3,3 graph as a minor.

Why K5 and K3,3?
K5 and K3,3 are the ‘smallest’ nonplanar graphs in that any graph you obtain from them
by deleting edges, vertices, or contracting edges is a planar graph.

K5
K3,3

Figure 3: Left: K5, Right: K3,3

In identifying these ‘smallest’ graphs, Kuratowski completely classified all planar graphs.
K5 and K3,3 form the set of obstructions for planar graphs.
Definition 7. A graph G is an obstruction for a property P if G does not have the property
P but every proper minor of G does.
We can thus restate Kuratowski’s theorem as:
Theorem 8 (Restatement of Kuratowski’s Theorem). The obstructions for planarity are K5
and K3,3.
This classification allows us to easily check if a given graph is planar, all we need to do is
check for a K5 or K3,3!

4. Our Work & Motivation
Let G be a graph. G is linklessly embeddable if we can embed the graph in 3-space
such that no non-trivial links are present. In a graph, a link is defined to be two or more
disjoint cycles that link together like a chain. It is known that there are seven obstructions
for linkless embedding: The Petersen Family.

Figure 4: The 7 Petersen graphs form the obstructions for linkless embeddings.

Ultimately, we would like to classify the obstructions to knotless embeddings of graphs.
But it’s hard: there are more than 1,000 obstructions (so far!) Since 2-apex graphs have a
knotless embedding, it’s logical to try to classify those instead.
A problem arises! It turns out that a 2-apex graph can be made apex by performing a
∆Y move.

Figure 5: A ∆Y move and its counterpart, Y∆.

We thus introduce cap as an analogue of apex because cap graphs are invariant under
Y∆ moves, better reflecting the topological invariance of linkless and knotless embed-
dings.
Jobson and Kézdy characterized apex obstructions of connectivity two by looking at the
properties of each of the two disconnected components upon deletion of the two vertices.
Their classification is as follows:

Figure 6: The 133 apex obstructions of connectivity 2 described by Jobson and Kézdy.
Retrieved from [1].
Of the 133 apex obstructions due to Jobson and Kézdy, 118 of them are cap obstruc-
tions. The 15 that are missing can be made apex by performing a ∆Y move, and thus are
obstructions for apex but not cap. See below:

Figure 7: Both of these graphs have connectivity 2. The left graph is an obstruction for
both cap and apex. Removing the edges of the red triangle in the right graph yields a
planar graph, so it is an obstruction to apex and not cap. Images retrieved from [3].

Our research follows a similar classification as in Figure 6. G has connectivity 2, so let
{a, b} ⊆ V (G) be the cut set. First, we differentiate between graphs that have the edge
ab ∈ E(G) and the graphs that don’t. The graphs that don’t have ab ∈ E(G) yield further
classifications relating to the structure of the cut set and the overall structure of the graph.

5. Questions for Future Work
Question 1. Is it the case that Ob(Cap) ⊆ Ob(apex)? Can a counter example be found?
Question 2. It is known that there are no cap graphs of connectivity ≥ 6, how do we
classify the obstructions for cap graphs of connectivity 3, 4, 5?
Question 3. Why does the number of obstructions jump from 2 for planar graphs, to 7 for
linklessly embeddable, all the way up to the 1,000+ obstructions (so far!) for knotless? Is
there a pattern in this sequence?
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